

Available online at www.sciencedirect.com

Novel bent-shaped liquid crystalline compounds: IV. Dimesogenic compounds containing 2-hydroxy-1,3-dioxypropylene and azobenzene mesogens

Bong-Keun So ^a, Hwa-Jong Kim ^a, Soo-Min Lee ^{a,*}, Hyun Hoon Song ^b, Joo-Hoon Park ^c

^a Department of Chemistry, Hannam University, Taejeon 306-791, Korea
 ^b Department of Polymer Science and Engineering, Hannam University, Taejeon 306-791, Korea
 ^c School of Natural Science, Hoseo University, Choongnam 336-795, Korea

Received 19 October 2004; received in revised form 12 January 2005; accepted 20 April 2005 Available online 21 June 2005

Abstract

Three bent-shaped dimesogenic liquid crystalline compounds having odd-numbered terminal alkyloxy chains (n = 5, 7, 9) with a 2-hydroxy-1,3-dioxypropylene as central linking unit and two identical azobenzene mesogens were synthesized. Their mesomorphic properties were then characterized by polarized light microscopy and differential scanning calorimeter. The terminal alkoxy chain length was the key factor to provide the liquid crystallinity in this series. The compound of n = 7 showed a monotropic SmC phase, and that of n = 9 displayed an enantiotropic SmC phase. The compound of n = 5, however, did not show liquid crystal phase. The thermal stability of the smectic phases also increased with the terminal alkoxy length.

© 2005 Elsevier Ltd. All rights reserved.

Keywords: Bent-shaped liquid crystal; Dimer; Azobenzene; Smectic C; Thermal stability

1. Introduction

Liquid crystalline dimesogens (dimers, bimesogens, twins, etc.) are attracting much attention in recent years because they exhibit variety of phases, and serve as useful models for semi-flexible, main-chain liquid crystal polymers [1–3]. In typical dimesogens, two individual mesogenic entities are linked to each other via flexible polymethylene spacer units. Of special interest are those containing mesogens based on azobenzene moiety. Azobenzenes can undergo reversible trans-cis (E/Z) isomerization upon irradiation with UV/vis light, which allows one to change physical properties of these

E-mail address: smlee@mail.hannam.ac.kr (S.-M. Lee).

materials by simple irradiation. A survey of liquid crystals composed of bent-shaped molecules revealed that compounds with azo linkages have hardly been studied. Nevertheless, azo compounds are very attractive for their high thermal stability and for the photoinduced effects as well as for the potential applications in liquid crystal displays and devices, reversible optical storage systems, nonlinear optical waveguides, photorefractive switches, and holographic gratings. Precise placement of photochromic moieties within the liquid crystal dimesogen also could lead to reversible photoinduced configurational and constitutional changes [4]. Recently, our group reported [5] that the bent-shaped azobenzene-typed dimers $(2A_n)$ with an even-numbered terminal chains (n = 6, 8, 10, 12) showed smectic C mesophase for the compounds of n = 8, 10 and 12, but not with the compound of n = 6.

^{*} Corresponding author. Tel.: $+82\ 42\ 629\ 7474$; fax: $+82\ 42\ 629\ 7469$.

$$H_{2n+1}C_nO$$

$$OC_nH_{2n+1}$$

$$OH$$

$$2An ; (n = 5, 7, 9)$$

Fig. 1. Structure of liquid crystalline dimesogens $(2A_n)$.

In the present work, we synthesized homologous compounds with odd-numbered terminal chains, and investigated for their liquid crystallinity. This article reports the synthesis and the mesomorphic properties of odd-membered dimers $(2A_n: n = 5, 7 \text{ and } 9)$ in comparison with the already reported even-membered dimers [5,6]. The materials containing two azobenzene mesogenic units with terminal alkoxy chains are depicted in Fig. 1.

2. Experimental

2.1. Materials

Anhydrous ethanol, *p*-toluenesulfonic acid (PTSA), 4-nitrophenol, 1-bromopentane, 1-bromoheptane, 1-bromononane, palladium on activated carbon (10% Pd/C), hydrazine monohydrate, epichlorohydrin (ECH), NaNO₂ were purchased from Aldrich Chemical Co. and used as received. All other solvents and reagents were purchased commercially and used without further purification.

2.2. Measurements

IR spectra were recorded with a Perkin-Elmer 1000 FT-IR spectrophotometer on KBr pellets. ¹H NMR spectra were recorded by using a Varian Mercury 300 (300 MHz) NMR spectrometer. Differential scanning calorimetric measurements were performed using a TA instrument 910S DSC apparatus under dry nitrogen flow at the scanning rate of 10 °C/min. The transition temperatures were taken at the maximum point of the peaks for each sample. The transition enthalpies were evaluated from the integrated area of the endothermic peaks using a reference indium sample as the standard.

Optical microscopy observation was carried out using a Nikon Labophot-2 polarizing microscope fitted with a RTC-1 temperature controller (Instec Inc., Broomfield, Co.) and a Mettler FP-82HT hot stage.

2.3. Synthesis of dimesogens

The $2A_n$ dimesogens were prepared as illustrated in Scheme 1. $2A_n$ were synthesized according to the method described in the literature [5–7]. Final products and intermediates were structurally characterized by IR, 1 H NMR and elemental analysis (CE instruments, Flash EA 1112 Series).

2.3.1. 4-Pentyloxy-4'-hydroxyazobenzene (A_5)

Brown solid (50%, mp. 104 °C). IR (KBr, cm⁻¹): 3315 (stretch, OH), 1580 (stretch, N=N). ¹H NMR (CDCl₃, ppm): δ 0.91 (t, 3H, CH₃), 1.20–1.47 (m, 4H, (CH₂)₂), 1.80 (m, 2H, CH_2 CH₂O), 4.01 (t, 2H, CH₂ CH_2 O), 5.40 (s, 1H, OH), 6.93–7.90 (m, 4H, Ar–H). Elemental analysis: calcd for C₁₇H₂₀N₂O₂, C 71.81, H 7.09, N 9.85; found C 71.78, H 7.01, N 9.89%.

2.3.2. 4-Heptyloxy-4'-hydroxyazobenzene (A_7)

Brown solid (65%, mp. 102.3 °C). IR (KBr, cm⁻¹): 3305 (stretch, OH), 1575 (stretch, N=N). ¹H NMR (CDCl₃, ppm): δ 0.92 (t, 3H, CH₃), 1.21–1.52 (m, 8H, (CH₂)₄), 1.85 (m, 2H, CH_2CH_2O), 4.02 (t, 2H, CH₂ CH_2O), 5.29 (s, 1H, OH), 6.95–7.94 (m, 4H, Ar–H). Elemental analysis: calcd for C₁₉H₂₄N₂O₂, C 73.05, H 7.74, N 8.97; found C 73.01, H 7.69, N 9.01%.

2.3.3. 4-Nonyloxy-4'-hydroxyazobenzene (A_9)

Brown solid (70%, mp. 108.2 °C). IR (KBr, cm⁻¹): 3320 (stretch, OH), 1575 (stretch, N=N). ¹H NMR (CDCl₃, ppm): δ 0.93 (t, 3H, CH₃), 1.29–1.61 (m, 12H, (CH₂)₆), 1.89 (m, 2H, CH_2 CH₂O), 4.00 (t, 2H, CH₂CH₂O), 5.33 (s, 1H, OH), 6.99–7.90 (m, 4H, Ar–H). Elemental analysis: calcd for C₂₁H₂₈N₂O₂, C 74.08, H 8.29, N 8.23; found C 74.02, H 8.32, N 8.29%.

2.3.4. 1,3-Bis-(4-(4-pentyloxyphenylazo) phenoxy)propan-2-ol $(2A_5)$

Yellow solid (34%). IR (KBr, cm $^{-1}$): 3482 (stretch, *OH*), 1595 (stretch, N=N). 1 H NMR (CDCl₃, ppm):

Scheme 1. Synthesis of dimesogens. (i) PhOH, NaNO2, HCl; (ii) ECH, K2CO3, EtOH.

δ 0.95 (t, 6H, CH₃), 1.29–1.61 (m, 8H, (CH₂)₂), 1.89 (m, 4H, CH_2 CH₂O), 2.77 (broad, 1H, OCH₂CH(OH)-CH₂O), 4.00 (t, 4H, CH₂ CH_2 O), 4.11 (d, 4H, O CH_2 -CH(OH) CH_2 O), 4.35 (m, 1H, OCH₂CH(OH)CH₂O), 7.05 (dd, 8H, Ar–H), 7.85 (d, 8H, Ar–H). Elemental analysis: calcd for C₃₇H₄₄N₄O₅, C 71.13, H 7.10, N 8.97; found C 71.07, H 7.15, N 8.90%.

2.3.5. 1,3-Bis-(4-(4-heptyloxyphenylazo)phenoxy)propan-2-ol $(2A_7)$

Yellow solid (53%). IR (KBr, cm $^{-1}$): 3495 (stretch, *OH*), 1600 (stretch, N=N). 1 H NMR (CDCl₃, ppm): δ 0.92 (t, 6H, CH₃), 1.29–1.58 (m, 16H, (CH₂)₄), 1.86 (m, 4H, *CH*₂CH₂O), 2.70 (broad, 1H, OCH₂CH(*OH*)-CH₂O), 4.02 (t, 4H, CH₂*CH*₂O), 4.08 (d, 4H, O*CH*₂-CH(OH)*CH*₂O), 4.25 (m, 1H, OCH₂*CH*(OH)CH₂O), 7.03 (dd, 8H, Ar–H), 7.84 (d, 8H, Ar–H). Elemental analysis: calcd for C₄₁H₅₂N₄O₅, C 72.32, H 7.70, N 8.23; found C 72.29, H 7.69, N 8.20%.

2.3.6. 1,3-Bis-(4-(4-nonyloxyphenylazo)phenoxy)propan-2-ol $(2A_9)$

Yellow solid (50%). IR (KBr, cm⁻¹): 3494 (stretch, OH), 1597 (stretch, N=N). ¹H NMR (CDCl₃, ppm): δ 0.93 (t, 6H, CH₃), 1.25–1.68 (m, 24H, (CH₂)₆), 1.85 (m, 4H, CH_2 CH₂O), 2.75 (broad, 1H, OCH₂CH(OH)-CH₂O), 4.00 (t, 4H, CH₂ CH_2 O), 4.18 (d, 4H, OCH₂-CH(OH) CH_2 O), 4.32 (m, 1H, OCH₂CH(OH)CH₂O), 7.02 (dd, 8H, Ar–H), 7.86 (d, 8H, Ar–H). Elemental analysis: calcd for C₄₅H₆₀N₄O₅, C 73.34, H 8.21, N 7.60; found C 73.30, H 8.19, N 7.55%.

3. Results and discussion

The synthetic route used for the preparation of dimesogens $(2A_n)$ is outlined in Scheme 1. The mesomorphic properties for the series of dimesogens were determined by means of differential scanning calorimetry (DSC) and polarizing optical microscopy (POM). Table 1 summarizes the thermal transitions and thermodynamic parameters of $2A_n$ dimesogens. Fig. 2 presents the DSC heating and cooling traces of dimesogens $(2A_5, 2A_7)$ and

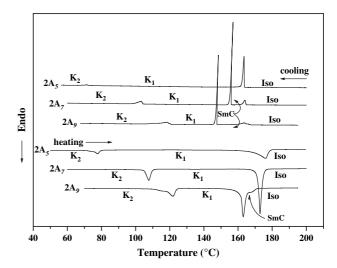


Fig. 2. Differential scanning calorimetric curves for $2A_5$, $2A_7$ and $2A_9$ (10 °C/min).

2A₉). In the heating scans, only the compound with the longest terminal chains (n = 9) in this series shows a crystal to smectic C phase transition at 163 °C and a smectic C to isotropic phase transition at 168 °C. In contrast, the compounds of relatively shorter terminal chains (n = 5 and 7) do not show liquid crystalline phase. In the cooling scans, however, the smectic mesophase emerges for the compounds of n = 7 and 9, but not for the n = 5 compound. Optical micrographs obtained during the cooling cycle are shown in Fig. 3(a) and (b). The micrographs exhibit schlieren textures of the smectic C phase for the 2A₇ and 2A₉. Results of the thermal transitions and texture analysis for $2A_n$ series with azobenzene mesogens suggest that the compound of n = 9 forms an enantiotropic liquid crystal of SmC phase with the schlieren texture, and n = 7 a monotropic liquid crystal of SmC phase with the schlieren or broken-fan texture. The compound having the shortest terminal chains (n = 5), on the other hand, does not show liquid crystal phase.

In Fig. 4, the dependence of the transition temperatures on the terminal chain length n for all $2A_n$ series including even-numbered compounds [5,6] and odd-numbered terminal chains (this work) are compared. Since the molecules are bent-shaped dimers with two

Table 1 Thermal transition behaviors and thermodynamic data for $2A_n$ dimesogens

n	Phase transitions (°C) ^a	$\Delta H_{\mathrm{K_1-S}}$ (kJ/mol)	$\Delta H_{\mathrm{S-I}}$ (kJ/mol)	ΔS_{K_1-S} (J/K mol)	ΔS_{S-I} (J/K mol)	Ref.
10	K ₂ 122.6, K ₁ 150.3, SmC 173.0 I	52.6	12.1	124.2	27.1	[6]
9	K ₂ 118.2, K ₁ 146.2, SmC 164.1 I	24.2	10.0	57.8	22.9	This work
8	K ₂ 105.5, K ₁ 155.2, SmC 170.5 I	44.1	8.7	102.9	19.5	[6]
7	K ₂ 102.9, K ₁ 153.4, SmC 163.0 I	48.0	4.1	112.6	9.3	This work
6	K ₂ 83.3, K ₁ 164.0 I	68.3	_	156.3	_	[6]
5	K ₂ 71.3, K ₁ 162.3 I	40.4	_	92.7	_	This work
4	K ₂ 77.2, K ₁ 182.4 I	62.7	_	137.5	_	[8]

^a K₁ and K₂ = crystalline states, SmC = smectic C phase, I = isotropic state, all data are obtained from 2nd cooling scan at 10 °C/min.

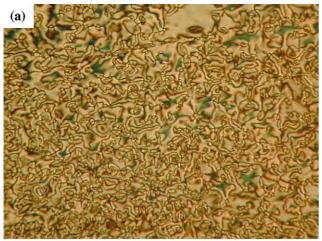


Fig. 3. Optical micrographs of (a) Schlieren texture (160 °C, $2A_7$); (b) Schlieren texture (160.2 °C, $2A_9$) (×100).

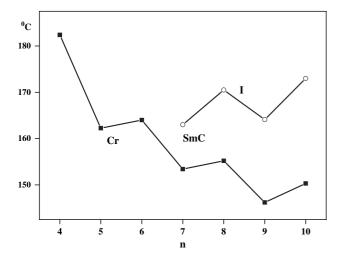


Fig. 4. The dependence of the transition temperatures on the number of carbons, n, in the terminal chain for $2A_n$ series. \blacksquare indicates crystallization points and \bigcirc isotropic—smectic C transitions. The transition temperatures are based on DSC cooling data.

terminal chains, increasing the terminal chain length is anticipated to increase significantly the length-to-breadth ratio resulting in liquid crystal phases, and particularly smectic phases, being stabilized at higher temperatures for higher homologues. In the figure, the compounds of short terminal changes only show isotropic to crystal transition without liquid crystallinity, but those of longer terminal chains $(n \ge 7)$ show emergence of the smectic mesophase. We also note that the temperature range of the smectic mesophase increases with the terminal chain length. The compounds of n = 10 show the largest temperature interval extending to 23 °C. Also the entropy changes for the clearing to smectic transitions continue to increase with increasing n. These results demonstrate that the tendency toward smectic mesomorphism and the thermal stability of tilted smectic phase increases with increasing terminal alkoxy chain length. This may be the result of the terminal alkoxy chains lying at an angle to the long molecular axis inducing the molecular tilt between neighboring molecules. And an even-odd alternation effect noted in this series as a function of the parity of the terminal chains has often been observed in the recrystallization and isotropic—smectic transition temperatures of the compounds containing mesogens. The effects of the terminal chain length on the transition temperatures and phases behavior observed in this series are in accord with those observed for conventional low molar mass mesogens.

4. Conclusion

We synthesized homologous azo-typed dimers $(2A_n)$ consisting of two azobenzene mesogenic units with oddnumbered terminal alkoxy chains (n = 5, 7 and 9). Their mesomorphic properties were examined in conjuction with the even-numbered homologues reported previously [5,6]. The tendency toward smectic mesomorphism increased with the increase of the terminal alkoxy chain length. The compound of n = 7 and 9 showed monotropic SmC phase and enantiotropic SmC phase, respectively. But the compound of n = 5 did not show liquid crystal phase. The thermal stability of tilted smectic phase also increased with increasing the terminal alkoxy chain length. Combining the results of those with even-numbered alkoxy chains [5,6], the system showed an even—odd effect in the phase transition temperatures.

Acknowledgements

The author (J-H Park) is grateful for financial support by the academic research fund 2004 of Hoseo University of Korea.

References

- [1] Imrie CT. Struct Bond 1999;95:149.
- [2] Date RW, Imrie CT, Luckhurst GR, Seddon JM. Liq Cryst 1992;12:203.
- [3] Attard GS, Date RW, Imrie CT, Luckhurst GR, Roskilly SJ, Seddon JM, et al. Liq Cryst 1994;16:529.
- [4] Yang Y, Li H, Wang K, Wen J. Liq Cryst 2001;28:375.
- [5] So B-K, Jang M-C, Park J-H, Lee K-S, Song HH, Lee S-M. Opt Mater 2002;21:685.
- [6] So B-K. Ph.D. dissertation. Hannam University, Taejeon, Korea; 2001.
- [7] Brecl M, Žigon M. Polymer 1999;40:6529.